
NAVAL POSTGRADUATE SCHOOL 
Monterey, California 

f^y 

ill 

***"»#- 

THESIS 
INTELLIGENT TUTORING SYSTEMS: 

A DESIGN SUPPORT TOOL 

by 

Harry Edward Landau 

September, 1994 

Thesis Advisor: Kishore Sengupta 

Approved for public release; distribution is unlimited. 

19941201 064 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for 
reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and 
reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection 
of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for 
Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office 
of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 

1. AGENCY USE ONLY (Leave blank) 2.   REPORT DATE 

September 1994 

3. REPORT TYPE AND DATES COVERED 

Master's Thesis 

4. TITLE AND SUBTITLE 
INTELLIGENT TUTORING SYSTEMS: A DESIGN SUPPORT TOOL 

6.   AUTHOR(S) 
Landau, Harry E. 

5. FUNDING NUMBERS 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey CA 93943-5000   

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of 
Defense or the U.S. Government. 

12a. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution unlimited 

12b. DISTRIBUTION CODE 

A 

13. ABSTRACT (maximum 200 words) 

The Department of Defense (DoD) is facing a shortage of qualified instructors for its advanced technical weapons 
training facilities. This shortage is because of the current downsizing trend, without a similar trend in the development 
of weapons and computer systems. To maintain a force of highly trained, technical personnel, DoD must investigate 
other methods for training and maintaining a highly technical force. The advanced capabilities of modern computer 
systems with the use of Intelligent Tutoring Systems (ITS) can provide a supplemental training aid for the lack of human 
instructors. This thesis proposes the use of a Design Support Tool (DST) to assist instructional designers in the 
development of ITS systems for the DoD. 

14. SUBJECT TERMS 

Intelligent Tutoring System, Computer Aided Instruction, Design Support Tools 

15. NUMBER OF PAGES 

54 

16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF 
THIS PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION OF 
ABSTRACT 

UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239-18 



Approved for public release; distribution is unlimited. 

INTELLIGENT TUTORING SYSTEMS: 

A DESIGN SUPPORT TOOL 

Harry Edward Landau 

Lieutenant Commander, United States Navy 

B A., California State University, Northridge, 1976 

Submitted in partial fulfillment of the 

requirements for the degree of 

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY MANAGEMENT 

from the 

NAVAL POSTGRADUATE SCHOOL 

September 1994 

Author: w 

vHarjT^ E'dward Landau 

Approved by: fa s W    S>ew    (tvJ^   
Kishont-SciigOpta.,1 'rincipal Advisor 

Balasubramaniam Ramesh, Associate Advisor 

(?(■ yr 
David Whipple, <£nairman 

Department of SystemsManagement 

in 



ABSTRACT 

The Department of Defense (DoD) is facing a shortage of qualified instructors for 

its advanced technical weapons training facilities. This shortage is because of the current 

downsizing trend, without a similar trend in the development of weapons and computer 

systems. To maintain a force of highly trained, technical personnel, DoD must 

investigate other methods for training and maintaining a highly technical force. The 

advanced capabilities of modern computer systems with the use of Intelligent Tutoring 

Systems (ITS) can provide a supplemental training aid for the lack of human instructors. 

This thesis proposes the use of a Design Support Tool (DST) to assist instructional 

designers in the development of ITS systems for the DoD. 

«-SSSÖS sloa for ;,-'?.-: 

mis   esA&i 
\ mic TIE 

i    Js;----': i f ' n~-t 1 l 

o 
v;a           _ 

;-- 

\ 

gv 
- DiRtrlfcutipn/#jjsK- 

Ävallabllitf 0M0S 

iMat 
Ma 11 

Speo 

i 

lal ■ 

i 



DISCLAIMER 

The views expressed in this thesis are those of the author and do reflect the official policy 
or position of the Department of Defense or the U.S. Government. 

vn 



TABLE OF CONTENTS 

I. INTRODUCTION  1 

A. INTELLIGENT TUTORING SYSTEMS  2 

B. THEORECTICAL PREMISE  6 

C. METHOLOGY  6 

II. DESIGN COMPONENTS  9 

A. MODERATOR  9 

B. INSTRUCTIONAL UNITS  9 

C. KNOWLEDGE BASE MODULE  11 

D. STUDENT INFORMATION MODULE  11 

III. DESIGNING AN INSTRUCTIONAL DESIGN SUPPORT TOOL  13 

A. DESIGN SUPPORT TOOL  13 

B. PROPOSED DESIGN SUPPORT TOOL  14 

1. Defining Lessons  15 

2. Defining Lesson Plans and Assigning Lessons  17 

3. Assigning Relationships Between Lessons  19 

4. Updating or Modifying Lessons and Lesson Plans  21 

5. Assigning Lesson Plans to Students  22 

IV. EXAMPLE  25 

A. SAMPLE COURSE  25 

IX 



B. DESIGNING THE LESSONS    26 

C. USING THE DESIGN SUPPORT TOOL    28 

D. USING THE ITS    32 

V. CONCLUSIONS   35 

A. SUMMARY    35 

B. FUTURE RESEARCH     35 

1. Design of a Support Tool   36 

2. Design of Knowledge Base Rules    36 

3. Implementation of a Complete ITS    36 

C. FINAL THOUGHTS    37 

LIST OF REFERENCES   39 

BIBLIOGRAPHY    41 

INITIAL DISTRIBUTION LIST  43 



I. INTRODUCTION 

Due to the current downsizing of the Department of Defense (DoD) and continued 

increase in the need for highly trained technical personnel, DoD will face a shortage of 

qualified instructors to train and maintain this technical force. The DoD must find an 

means to supplement the lost of these instructors for training its personnel. 

Possible solutions would be to hire civilian instructors or add provisions in system 

maintenance contracts for continuous training from the contractor. Neither solution 

eliminates the basic problem: not enough funds to supply the required instructors. 

Another alternative would be to supplement current and future training with Computer 

Aided Instruction (CAI). 

CAI can provide training without the additional expense of an instructor at every 

site. CAI, developed with modern authoring systems, can also take advantage of current 

computer multimedia capabilities providing students with better training aids than the 

textual CAI of the past. These authoring systems can provide excellent training, with one 

exception — no human instructor is available to interact with the student. 

The human instructor can sense when a student does not understand the material 

being presented and can ask probing questions to determine the nature of the student's 

difficulty. Most current CAI lacks this ability and simply presents the material in a 

predetermined path, providing minimal feedback to the student. The student may, if 

desired, repeat a lesson. However, this repetition may not provide the additional 

explanations or information the student requires to understand the training material. A 

1 



human instructor can rephrase the information or present different information to support 

the training objectives. 

S. Ohlsson states: 

... The task of tutoring is forever changing. School systems undergo 
reforms, student populations follow the rhythms of the surrounding 
society, topics are added to (or deleted from) the curriculum, courses are 
moved from one age-level to another, and course contents vary from 
textbook to textbook, from classroom to classroom. What we need then 
are not particular, quickly outdated, computer tutors but the know-how of 
tutor construction.... Even a pedagogically successful tutor has limited 
interest if it leaves system designers without any information about how to 
design the next system. The output of research into computer tutoring 
should consist, not of particular systems, but of principles which allow 
specifications - in terms of course content and student characteristics - to 
be turned into effective tutors (emphasis added) [Ref. 5]. 

What is needed is a system that supplements the human instructor, is able to 

determine the student's level of comprehension, and tailors the instruction to the student's 

ability. 

A. INTELLIGENT TUTORING SYSTEMS 

Intelligent Tutoring Systems (ITS) have evolved from the earlier Computer Aided 

Instruction (CAI) systems. The early CAI systems were basically page-turners, 

presenting prepared text, or drill-and-practice programs. These systems presented 

problems and responded to the students' solutions using stored answers and remedial 

comments [Ref. 8]. To improve on the value of using computers in education, software 

developers introduced artificial intelligence techniques in the traditional CAI systems. 

These systems were referred to as Intelligent Computer Aided Instruction (ICAI) system, 

which later became known as Intelligent Tutoring Systems (ITS) [Ref. 10]. 



Bums and Capps [Ref. 3] state that a CAI must pass three tests before it can be 

considered an Intelligent Tutoring System: 

1. The computer must understand the subject matter well enough to draw 

inferences or solve problems in the subject matter or domain. 

2. The system must be able to deduce a learner's level of comprehension of the 

knowledge contained within the subject matter. 

3. The strategy of the ITS must be intelligent; that is, the "instructor in a box" 

can implement strategies to reduce the difference between expert and student 

performance. 

An ITS utilizes an information network of facts, concepts, and procedures. It 

should automatically generate questions, explanations, and answers [Ref. 10]. The ITS 

resembles and attempts to replicate, a one-on-one session between a student and 

instructor. During a session, the ITS will attempt to determine the current state of the 

student's level of comprehension and alter the tutoring session to accommodate this 

model. 

VanLehn [Ref. 11] describes several essential problems of student modeling in 

ITSs. He refers to these problems as the bandwidth of available knowledge (how much 

of the student's activity is accessible to the system for diagnostic purposes) the types of 

knowledge to be learned, and the ability of the system to assess the differences between 

the student and the expert. 



VanLehn classifies knowledge into two types: procedural, which is sub-typed 

into flat and hierarchical, and declarative. Procedural knowledge is used to perform 

tasks, while declarative knowledge is fact-like and not specialized. Flat knowledge 

presents information based on preset rules and the current actions by the student. 

Hierarchical knowledge allows for "subgoaling" [Ref. 11]; however, this knowledge 

system is harder to code and needs to infer conditions, problem states and subgoals [Ref. 

11]. 

This thesis recommends the use of a student information module to map the 

student's usage of the ITS instead of a diagnostic system designed to generate a model of 

a student. This module is discussed in Section II.D. 

ITSs can be designed to provide different aspects of a training environment. 

Some ITSs replace the instructor and provide an environment that can be used without 

any human instructor/tutor assistance. Other ITSs supplement, rather than replace, the 

human instructor. The goals of such an ITS are to: 

1. Assist the instructor to organize lessons for a course. 

2. Provide consistency among the lessons, providing the instructor with a system 

that allows for the ITS to be updated with new material and maintain relevance to 

material being presented in the classroom. 

3. Provide students with an environment that supplements the classroom 

instruction. The goal is not to replace the classroom instructor, but allow to students 

another means to review and obtain additional information presented in the classroom. 



The basic ITS proposed by this thesis (Figure 1-1) is modeled after the second 

type of ITS, which assists the instructor in designing and maintaining a course of 

instruction and supplements the classroom instruction. The main component is the 

interface, or system moderator, which provides the interface between all of the other 

Knowledge 
Base 

Student 
Information 

Moderator 

Student 

Instructional 
Units 

Figure 1-1: Basic Intelligent Tutoring System Model 

components of the ITS. The moderator communicates directly with the student using the 

system and transmits messages between the other three components. The Instructional 

Unit (IU) module contains the actual instruction to be presented to the student. The 

Knowledge Base module is an expert system consisting of set of rules by which the ITS 

determines what, if any, additional IUs the student requires. The Student Information 

module is generated as the student uses the system and is used to aid the moderator in 

5 



determining what IUs to execute. This module also provides information to the instructor 

about the student's progress. 

B. THEORETICAL PREMISE 

Most current research aims to have the ITS replace authoring systems and do all 

of the tasks necessary to provide all training on the subject being presented (MYCIN, 

ACT*, etc.) [Refs. 1,4,12]. This approach limits the ITS to a specific subject. A goal of 

ITS research should be the development of tools to aid the instructor in designing a 

course of instruction. The proposed Design Support Tool (DST) would allow the 

instructor to design individual components of the ITS, using the best tools (i.e., authoring 

systems, expert systems, etc.) for each section of the ITS, develop an easy interface to 

link these components together, and maintain the ITS up to date. 

C. METHODOLOGY 

The design support tool should provide an easy interface for a designer to 

integrate the components of an ITS into a complete tutorial system. The components of 

an ITS are the individual lessons generated by an authoring tool, the knowledge base 

generated by or included in an expert system, the student module generated by the 

tutoring system as a student uses the system, and a system moderator which interfaces 

with all the components and directly interacts with the student using the system. Instead 

of incorporating all of these components into one package, this thesis proposes a system 

composed of a design tool and system moderator which will integrate the end product of 

other tools. This paper will show what should be included in the design tool and how the 



tool should be used to aid in the integration the individual components to provide the best 

tutorial system. 





II. DESIGN COMPONENTS 

This chapter describes the four components of a basic ITS and how they interact 

with each other and the user. 

A. MODERATOR 

The moderator is the heart of the ITS. Its function is to interface directly with the 

student, execute the selected IUs, pass and receive messages between the individual 

modules (IUs, Student, Knowledge Base) and maintain a log of the student's usage and 

level of comprehension. An instructional designer can use the proposed Design Support 

Tool (DST) to develop the structure of the instructional material. The moderator can use 

this along with the information gained during the actual use of the ITS to determine the 

flow of the tutorial. 

B. INSTRUCTIONAL UNITS 

The basic building block of a tutorial is the Instructional Unit (IU). IUs are the 

actual components or lessons developed using an authoring system and whose main 

function is to present the instructional information to the students [Ref. 6]. This 

information may be presented by the IU through a combination of different formats; i.e., 

textual, audio, graphical, video, etc. 

An example of a simple IU would be an introduction to a topic. This type of IU 

may be text only and simply explains how to use the system and states the learning 

objectives for the topic. The interaction with the student may also only be page turning 

and not incorporate multimedia techniques. 



A more complex IU would incorporate more than just text. For example an IU 

may use a multimedia presentation to teach the components of the control console of an 

airplane. This type of IU would use audio, video and computer-generated graphics. The 

audio would explain what the student is viewing. The video would be a view looking out 

from the cockpit, and the computer graphics would simulate the control console 

instruments. The IU would demonstrate the appearance of the instruments when 

climbing, diving, or turning or would instruct the student in the techniques needed for 

take-off and landing. 

The IUs function by communicating simultaneously with the student and the 

moderator. The student in turn also simultaneously communicates with the IUs and the 

moderator. Student performance dictates which IU is appropriate. The IUs must have the 

capability to communicate directly with the student, periodically send messages to the 

moderator, receive instructions, and perform required actions in order to provide the 

instructional material to the student. For example when the student requests a specific 

lesson to be executed, the student interacts directly with the moderator which verifies 

that the request can be accomplished. The moderator loads and executes the IU which 

interacts directly with the student, presenting the training and receiving input (i.e. mouse 

button actions, menu selections, etc.) and transfers this information to the moderator in 

the form of a message. Other messages are generated when the IU starts execution and 

again when it completes its execution. 

10 



C. KNOWLEDGE BASE MODULE 

The Knowledge Base Module of the ITS is a set of rules designed to simulate the 

presence of a human instructor or tutor. These rules are compiled with an expert system 

generator and assist the moderator in determining the student's level of comprehension. 

The knowledge base rules may be simple control rules or more complex 

multilevel rules. A simple control rule may verify that the student has already used a 

specific course of instruction and therefore skip an introductory IU: 

ifFirstTime 
then execute intro.exe 

A complex rule might determine if a student's request to execute a specific IU is valid: 

execute lesson2 if 
lesson 1 complete 

and 
lesson 1 quiz complete with result > .85 

The system moderator receives messages from the IUs and sends them to the 

knowledge base module. The knowledge base module interprets the messages using a set 

of rules designed for the specific course of instruction and returns a message to the 

moderator. The moderator uses the message from the knowledge base module to build a 

picture of the student's level of comprehension and makes decisions as to which IUs to 

execute during the tutoring session. 

D. STUDENT INFORMATION MODULE 

The Student Information Module, maintained by the moderator, contains a set of 

information which the system infers as the student uses the system. The information 

11 



contained in this module helps the system determine the student's level of 

comprehension. It includes a log of the student's usage of the system in order for system 

monitors (instructors or remote site training officers) to assist the student's training. 

This Module would contain the following student information: 

1. Student name 

2. Student Social Security Number 

3. Lesson Plans assigned to the student 

4. For each Lesson Plan assigned: 

a. Date and time plan started 

b. List of lessons completed with date and time started and completed 

c. Results of quizzes or exams taken by student 

d. Information in a free format from the student (i.e., questions about 

training material, problems encountered with system, errors noted in training material, 

etc.). 

This information module is maintained in real time based on messages received 

by the system moderator from the IUs, the knowledge base module, and from the student. 

The moderator will not try to build a model of the student, but maintains information 

about the student's usage of the system. 

12 



III. DESIGNING AN INSTRUCTIONAL DESIGN SUPPORT TOOL 

A. DESIGN SUPPORT TOOL 

Russell et al. [Ref. 6] describe an Instructional Design Environment (IDE), or 

Design Support Tool (DST), as "an interactive design and development system to help 

instructional designers deal with the complexity of creating instructional materials." The 

objective of this tool is to provide an instructional course designer with the ability to 

design and generate a complete ITS, and allow for future modifications as the course 

changes or as deemed necessary to configure specific courses to individual students. 

IDE does not provide links between different components generated by other 

software packages. Incorporating this functionality should help the instructor to 

formulate lesson plans and courses by allowing visual examination of the 

interrelationships being developed in the course design. It should also provide a 

repository of information and course components (i.e., IUs) that is available to an 

instructor or instructional designer for designing different versions of topics. These 

versions would allow the instructional designer to provide different levels of training to 

different students and use the same IUs for different courses. 

This method of designing an ITS allows the designer to utilize the best features of 

an authoring tool to develop the actual IUs and an expert system generator to develop the 

knowledge base component. Once these components are developed, the ITS generated by 

the proposed DST will use the computer's multitasking features to execute the ITS. 

13 



The DST should provide a user interface that allows the designer to generate an 

ITS similar to the way a course of instruction is developed for a classroom environment. 

The DST design presented in this thesis breaks down the design process into logical 

steps. The designer may use the DST without having completed the development of IUs 

or the knowledge base component and may edit or modify the ITS as the individual 

components are developed. 

B. PROPOSED DESIGN SUPPORT TOOL 

The proposed DST is divided into separate object-oriented classes: Lessons, 

Lesson Plans, and Students. These classes have associated class browsers which provide 

the interface with the instructional designer when developing or designing a course of 

instruction for an ITS. The following sections in this chapter will describe how an 

instructional designer would use the DST to develop an ITS. A prototype of the DST was 

devloped using SmallTalk from ParcPlace on a Sun Workstation. Chapter IV explains 

the process for developing a course of instruction using an example. 

The Design Support Tool will allow the designer to define a group or groups of 

lessons with associated IUs and assign them to individual lesson plans that are then 

assigned to individual students. The resulting flexibility in the development of an ITS 

allows the designer to customize a set of courses for individuals and to maintain the 

instruction up-to-date simply by modifying an IU and, if necessary, the lesson plan for a 

specific course. 

14 



1.   Defining Lessons 

The lesson, the basic class of the DST, is the link between the moderator and 

the IUs. Lessons are not the same as an IU. The IU is the actual material, or executable 

file, that presents the instructional information to the student and is generated by an 

authoring system. Lessons are objects which contain information about a specific IU and 

allow the designer to determine which IUs to link into a lesson plan. 

The instructional designer must determine how many IUs are required to 

present the information necessary to meet the learning objectives. The number of IUs 

will depend on the number of course sections. The designer may also include additional 

IUs to expand the basic IUs. The designer generates a library of IUs and then uses the 

DST's Lesson Browser (Figure 3-1) to link these into a complete tutorial. 

The Lesson Browser screen is divided into two sections. The upper section 

(Window 1, Figure 3-1) displays all of the lesson objects that have been generated, while 

the lower section (Window 2, Figure 3-1) displays information about a selected lesson 

object. 

The lesson class as defined by the DST consists of information necessary for 

the instructional designer to determine where, how and if he will use a specific IU in the 

ITS that he is designing. This information (Window 2, Figure 3-1) consists of: (a) a 

name for the lesson, (b) the type of lesson, (c) a short description, (d) details pertinent to 

the lesson and (e) the executable file name for the IU. 

15 



& 

fn Lesson Browser 

Lesson One 
Lesson Two 
Lesson Three 
Lesson Six 
Lesson Seven 
Lesson Eight 

New   )     Delete ) Load   )     Save  ) Print   ) Quit   ) 

Name: Lesson One 

Description: Tnis is a short description of the lesson 

Type: Essential 

Lesson plan: Lesson Plan 2 

Details: 

Content- Lesson executable file info 

This explains what this lesson is about and/or provides information for the 
Instructional designer 

Figure 3-1: Lesson Class Browser 

The name of the lesson should be unique. The DST prompts the designer if an 

attempt is made to add a new lesson with the same name as an existing lesson. (The 

lesson name is not case sensitive.) A short description provides the designer with basic 

information about the lesson, and a detailed description provides an area to explain how 

the lesson is used, any special features of the lesson, etc. The type of lesson specifies the 

importance of the lesson. Examples of lesson types are: Essential, Important, or 

Desirable. Essential lessons must be included in the instruction, and the moderator of the 

ITS will always present these IUs to the student. Important lessons may be skipped if the 

ITS determines that the student has mastered the requisite knowledge. Desirable lessons 

16 



are presented to a student if that student shows a major lack of knowledge or specifically 

requests additional information. 

2.   Defining Lesson Plans and Assigning Lessons 

Once the lessons are designed, the designer must determine how to combine 

them to develop the course outline. The Lesson Plan Class provides the means to link 

lessons together. A course of instruction may contain one or several Lesson Plans. The 

designer reviews the lessons and formulates a plan for the course, linking individual 

lessons together with the Lesson Plan Browser (Figure 3-2). The Lesson Plan Browser 

provides the designer with all of the information needed to design the plan and link the 

individual lessons together. Window 1 is a list of all Lesson Plans generated. These 

plans may or may not be complete. The window provides a pop-up menu to add or 

delete, compile, print, save, load or graph a lesson plan (Refer to Section B.3)  When a 

plan is selected, windows 2, 3, and 5 are updated, and any available data are displayed. 

Window 2 provides a description of the selected plan. This window also 

allows editing any of the information about the plan. 

Window 3 lists all the lessons assigned to the plan selected in window 1. This 

window provides the user with a pop-up menu that allows adding or deleting lessons. 

The DST will not allow the user to add the same lesson more than once and will display 

an error screen to inform the user. When a lesson is selected, windows 4 and 6 update 

and display any information available about the selected lesson. 

17 



Figure 3-2: Lesson Plan Class Browser 

Window 4 is a read only window providing detailed information about a 

selected lesson in window 3. 

Window 5 is a read-only window, listing all assigned relationships for the 

selected plan (refer to Section B.3 for more information about relationships). When a 

relationship is selected, it is displayed in window 7. 

Window 6 is a read-only window, displaying all of the assigned relationships 

for the selected lesson. When a relationship is selected, window 7 displays the 

information about the relationship. 

Window 7 displays the selected relationship between two lessons. The 

information displayed may be an entry selected in window 5 or 6. The information 

displayed will always be from the last selection made. If the last selection is de-selected 

18 



and a selection remains in the other window, window 7 will update to display information 

about that selection. This window is used to add, delete or edit lesson relationships, 

discussed in the next section. 

3.   Assigning Relationships Between Lessons 

Once all of the lessons have been assigned to a Lesson Plan, the designer must 

establish the relationships between the individual lessons. These relationships are used to 

determine the order of precedence of the lessons and how each lesson relates to other 

lessons. Using the Lesson Plan Browser, the designer selects two lessons to form a 

relationship between (i.e., Lesson Eight and Lesson Seven in Window 7, Figure 3-2). 

The designer determines which lesson precedes the other and assigns a precedence of 

"PRECEDES" or "SUCCEEDS". Once the order of precedence is assigned, the designer 

assigns a relation, between the two lessons, such as EXPLAINS, EXPANDS, 

SUMMARIZES, DEMONSTRATES, NONE, etc. Relationships between lessons must 

have both a precedence and a relation. The relation must inform the DST the order in 

which the lessons are to be placed and the relationship between the lessons. This 

two-dimensional aspect of relationships allows the DST to make consistency checks and 

ensure that the plan will function logically. Table 3-1 shows what type of inconsistencies 

are not allowed by the DST. The DST will attempt to solve any inconsistentcy or conflict 

in new or revised relationships at the time that they are added or changed. 

Once the all of the relationships between all of the lessons have been assigned, 

the designer then uses the DST to generate a Lesson Plan Tree Relation graph (Figure 

19 



2 
►o — C ST ö 

S  2. >< K.  CL 
b- x   *> £. CL 

h 
>< > 

CL 
1> 
CL 

h- 
X 

►— £   2 w on    Q. En Crt     CL to Q. CL on 

§   » 
*—    CO 
p    on 
5   o 
••   a 

s 
TO 

ft 

o 

5'   3 
TO    " 
"i    * 
ft    -, 
»    2 
o' cr. 

5 
TO 
^i 
ft, 

5 

B' 3 TO   2 
-i < n -, 
P  2. 
C^   O3 

o' cr. 

3 
TO 

3 

If 
o 

3 
rt 
? 
rt 
B" 

3 
rt 

rt_ 

5 
TO 

2 
ET f* 

5 
3 TO    CL 

2, I>J 

IO 3 
on 

3   O 
r*   3 

3 a  o 
P*   3 

3 o 
3 

o' 
a 

3" 2  o 2  o 
•1 

ET -i 
*■*  ft 3 rt ft 

ö'"H a. a. 
3   3 
*-.  co 

*™^ •^ 
on   rt 

o 3 

S- 3 

r r r     r r r r r r f K> *"* ^-     M— 
M ro «—» 

-7 
ft rt 

C/3          ho 
3          3 rt          2 

T5 
3 7 

rt 
T3 
ft rt i ft rt 

SÜ    ft O o rt         2 o o o o o o ft ft ft          2 ft rt rt rt ft rt 
a- B-. 
o>  R CO        3> 

CL CL rt             ?L CL CL CL o. CL CL ft ft 
on 

rv           ft 
CO               <" 

rt ft 
cn 

ft 
CO 

rt 
CO 

ft rt 
CO 

rt 
ft 

ft   2 
ft» ft> ft»    f5? ft» ft> ft» ft» ft» ft» 
oo 00 tvo 2 m &0 ai or) CO oo 00 SI 

a   ~ c C C          X c c c c c c ■-• 

w   ?T 3 3 3     "2. 3 3 3 3 3 3 o 
3 rv   Co 

£■ O ft         Ä 
CL   g 

3 3 3      g- 3 3 3 3 3 3 CO 

H 
ft               KJ 

es 
N' N' 

s 
N N 

s 
N 

s. 
N 2 o  B- 

ft 
on 

ft 
on 

ft 
VI 

rt 
CO 

rt 
CO 

rt 
CO 

ft 
CO 

rt 
CO 

ST F> & r r r r r r r r r 
■ 

ft     ft 

ft  <* 

o  2. 
3  n 

^r 
£j a 
l->    on 

T3    Co 

o   = 

LtJ rO K) K) ^^ K) ^ (O ro 

o 
D 

a   cr » 
°   2  » 
« ? 3 
g   ft   o 
S  ft  < 

" 2, B" S roo 

3   R» w 

ST f 5" 

R * 
ft1 o 

§  rt 
t-.   tu 

"a =. 
2    3 
8 « 

•o  3 n 
3  2  o 
o   %   3 

ill 
Si s 

CD 
o 
& 
rt* 
CO 
CO 
O 
3 
CO 

O 
—> 

Z 
rt 

rt 
5" »-♦ 
o' 
3 
CO 

© 
D 
en 
«5* »*• 
n 
P 

«5 
O 
« 

o g* 
5^ 
rt 
c 
CD 
ft 

XJ 
c 
ft 
CO 

/^\ 
ft 

> 
CL 
CL 

3 
ft 

s s g- 
r G " 

~   U)   ft 
U)  •      o 

3 5' 
2     *° 
ft 

on' 

rt »-. 

o    -* 
ft     *-► 

3" 

§    » 

O   3 

i's P    on 

g 
CL 

o" 1  B. 
B" 2 cr 
^^TO 

ft       t-| 

s. g" rt a. 
r § 

e B 
^S 
ft   rt 

3 
rt 

2. 

o" 
3 

85 
rt 

5- 
rt 
CO 

rt 

ft 

e 
ft 
>< 
En' 
#■♦ 

5' 
TO 
3 
E" 
*-*■ 

5" 
3 

rt* 
3 

Ifltf li III 
TO   i^ft 
rt^r If 
Sag &>< 
a  o)  •    "ft 

*** R « 3 

5* cw 

2 1 8 ^ I & 
3           CO 
rt    CO  »a 
3   rt   ü 

2 « 

CL   00 

«'^ "1    on 

^J    ft TO   a 
&  3 
3. D. 
»     CO" 
3  "O 
S   w 
-!    «" 

CO 

rt 

00 
CO *-* 
ft 

3 
Q. 
on" 

"H. 5" 
v: 

CO 

o' 
a 

2 | 3 
3 I & 
3 a. s- 

ft A 

2 w 

TO 
E5 
CL 
CO 

3 
rt 

°  2" 
3   2 ° 2* 3   2. 

2. rt 2 
&3 

rt 

o 
o 

rt   3- 
-1    _, 

rt   & 
•1   ^ 

cr. o 
o' 

o 
P  2  °  3  3 2. 2. 

w" CL 
ft   o_ 
5" CL 

3 3 
rt 
CO 
on 
Bl 

TO 

3 3 
rt 
CO 
CO 
Bl 

TO 

rt 

a    O    W    on 
3    ~    «-»-   Co 
ft a ö' o) 
on    g    2   05 
on    ft    3   ure 
B>    <">    r*   • 

3    g. s-g 
3     Q. 

5' 
3 

o  a o  3 ft 

ft   * 

3  2. 

ft rt 
TO   Ef. o 
; 2 o c 
3^   on    B    -1 
rt   —    3    ._ 3   3   rt   g 

o  2 a 

_. rt 
fT* 
3 2. 

§ 
CL CL 

r 5- 
P     S3 

B- §■ 

| 1 Q.   . ,   on n r« ft    3 
■      CL K 

ft   a 
CL £ 

_ 

20 



(.«*»■ Pttn Tr*e Structure 

■^Lesson Eight | 

-ILesson Mine   I [Lesson Ten""! 1 Lesson Iwelvil 

-ILesson ten    I ILcsson Iwelvil 

■H Lesson Seven | 1 Lesson bleveri 

-ILesson [hrccl 

-ILesson hour   | 

Figure 3-3: Lesson Relation Graph 

3-3), which allows the designer to view the overall structure of the Lesson Plan and make 

any changes deemed necessary to improve the flow of the instruction. When the DST is 

compiling the tree it captures any remaining inconsistencies within the plan. These 

remaining inconsistencies occur when a lesson does not relate to any other lessons in the 

plan, a lesson linked to more than one lesson in an endless loop, etc. 

4.   Updating or Modifying Lessons and Lesson Plans 

An advantage of using the DST is that the designer can easily view the 

completed design of the tutorial and, if necessary, change the precedence or relationship 

of the lessons to meet any design changes or to configure a Lesson Plan for a specific 

student. The DST allows for the easy alteration of the entire ITS without requiring the 

original tools used to generate the instructional units. If the content of the IU needs to be 

21 



modified, the authoring system would be required. Only selected IUs are updated; the 

rest of the system remains intact. 

5.   Assigning Lesson Plans to Students 

Once individual Lesson Plans are developed, an individual instructor or 

training officer assigns Lesson Plans to the students. To assign a Lesson Plan, the person 

responsible for assigning training uses a Student Class Browser (Figure 3-4). The 

Student Class Browser shows which students are already logged into the DST system 

(Window 1, Figure 3-4) and if necessary adds or deletes a student or students. When a 

student is selected in this window, a list of assigned lesson plans is displayed in Window 

2. 

©- 

d> 

d> 

Students - 
Student Browser [06.29] 

Davis, Miles   [ 000-00-0000 J 
Rollins, Sonny   | 000-00-0000 ] 

tenoned tenon Plans for Selected Student- 
Lesson Plan 1 
Lesson Plan 2 

Lessons Completed ki Selected Ftan- 

Figure 3-4: Student Class Browser 

22 



Window 2 of the browser allows the training individual to assign or remove 

individual lesson plans for the selected student. The DST only allows a student to be 

assigned one version of a lesson plan and displays an error message if an existing lesson 

plan is requested to be added a second time. When a lesson plan is selected in this 

window, the DST will display any lessons flagged as completed in Window 3. Window 3 

is a read-only window and only provides information to the user of the browser. 

Once the lesson plans are assigned to individual students, the student has 

access to that plan. When the student is logged onto the ITS moderator, a screen showing 

what lesson plans are available for execution is displayed. 

23 



24 



IV. EXAMPLE 

A. SAMPLE COURSE 

This chapter illustrates how to design a sample course of instruction using the 

proposed DST. The sample course is based on Timothy Budd's book AN 

INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING [Ref. 2]. 

Budd prefaces the book by stating that he wrote it was because he "was faced with 

teaching a course and was not able to find a suitable existing text" that met his objectives 

for the course. His objectives for the course were to teach theconcepts of object-oriented 

programming (OOP) and provide examples of their implementation in different 

languages. He therefore set out to design both a text and course to teach OOP. 

The book is divided into twenty chapters, each with several sections. Using the 

framework previously outlined, the book can be viewed as a course that contains various 

lesson plans (chapters), each of which contains various lessons (sections). 

Each chapter (lesson plan) has a short introduction that presents the objectives for 

that chapter. Each section (lesson) provides the student with the knowledge necessary to 

meet the objectives. The contents of the lessons can vary widely: Some of the lessons 

are simple text explanations, while others provide graphical displays and examples of 

code in different languages. 

This illustration uses Chapter 6, "Classes and Methods", for its material. 

25 



B. DESIGNING THE LESSONS 

Chapter 6 is divided into six sections, some with subsections. The structure of the 

chapter is as follows: 

6.0 Inheritance 
6.1 The Benefits of Inheritance 

[6.1.1] Software Reusability 
[6.1.2] Code Sharing 
[6.1.3] Consistency of Inheritance 
[6.1.4] Software Components 
[6.1.5] Rapid Prototyping 
[6.1.6] Polymorphism 
[6.1.7] Information Hiding 

6.2 The Cost of Inheritance 
[6.2.1] Execution Speed 
[6.2.2] Program Size 
[6.2.3] Message-Passing Overhead 
[6.2.4] Program Complexity 

6.3 Heuristics for When to Subclass 
[6.3.1] Specialization 
[6.3.2] Specification 
[6.3.3] Construction 
[6.3.4] Generalization 
[6.3.5] Extension 
[6.3.6] Limitation 
[6.3.7] Variance 
[6.3.8] Combination 

6.4 If It Ain't Broke 
6.5 Tree Versus Forest 
6.6 Composition Versus Construction 

The overall learning objective of chapter 6 is to understand inheritance and the 

use of inheritance in objected-oriented programming. The chapter can be considered a 

single lesson plan dealing with the OOP topic of inheritance. When defining a lesson 

plan the designer should include all of the IUs which support the learning objectives of 

26 



that topic. The subsections of chapter 6 are individual lessons each intended to present 

material which provides information pertinent to the learning objectives. Some lessons 

are designed to expand on the information presented in a previous lesson either by 

explaining in more detail or presenting an example. Other lessons are designed to 

summarize a topic or sub-topic while others are used to test the student's comprehension 

of the material presented. Each of these different types of lessons are linked together to 

form the overall lesson plan. Each link between lessons requires a precedence and 

relation for the DST to compile the lesson plan into a workable structure for the ITS 

moderator. 

Chapter 6 can be designed as an individual lesson plan to present the IUs 

necessary for the topic of OOP inheritance. Each of the chapter's subsections are 

individual lessons and present information necessary to fulfill the learning objectives. 

The instructional designer must determine which of the lessons are essential to the 

learning objectives and so indicate when using the DST. These lessons are then required 

to be presented, no matter what the ITS determines is the student's level of 

comprehension. Using the example, the essential lessons are each of the main 

subsections (i.e.: The Benefits of Inheritance, The Cost of Inheritance, etc.) which will be 

presented to all students using the ITS. 

The next set of lessons important to the learning objectives, but which may be 

skipped if the student meets certain criteria, must be identified. These lessons are 

designated by the designer and the criteria placed in the knowledge base rules. The 

27 



determination of the criteria is based on what each lesson will present and how much it 

expands on a previous lesson. Table 4-1 shows some sample relations for this lesson 

plan. 

C. USING THE DESIGN SUPPORT TOOL 

Once most of the design questions have been answered, the instructional designer 

can either use the DST first or wait until after developing the individual IUs. Using the 

DST first will allow the designer to experiment with different lesson plan structures 

before committing a final design to the IUs. When using the DST, the designer first 

accesses the Lesson Browser and enters the information for each lesson. To do this, the 

designer executes the browser, select the "New" push button, and enter the information 

about the lesson. The lesson for section 6.0 is entered as follows: 

1. Start the Lesson Browser. 

2. Press "New" push button. 

3. Enter a name for this lesson: "Introduction to Inheritance." 

4. Enter the type of lesson: "Essential." 

5. Enter a short description: "Introduction to inheritance in OOP." 

6. Ignore Lesson Plan (This is used by the DST). 

7. Enter the file name of the IU: "L6-0.EXE." 

8. Enter a detailed description of this lesson. 

This procedure is done for each lesson; a sample Lesson Browser screen would look like 

Figure 4-1. 

28 



Ö o 
CO 

u 

"T
he

 B
en

ef
its

 o
f I

nh
er

ita
nc

e"
 

ex
pa

nd
s 

on
 th

e 
re

as
on

 fo
r 

in
he

ri
ta

nc
e 

by
 e

xp
la

in
in

g 
th

e 
be

nf
its

 o
f u

si
ng

 
in

he
ri

ta
nc

e.
 

"S
of

tw
ar

e 
R

eu
sa

bi
lit

y"
 e

xp
la

in
s 

on
e 

of
 th

e 
be

ne
fi

ts
 o

f u
si

ng
 in

he
ri

ta
nc

e 
in

 
O

O
P.

 

"C
od

e 
Sh

ar
in

g"
 e

xp
la

in
s 

on
e 

of
 th

e 
be

ne
fi

ts
 o

f u
si

ng
 in

he
ri

ta
nc

e 
in

 O
O

P.
 

"I
f I

t A
in

't 
B

ro
ke

" 
ex

pa
nd

s 
on

 th
e 

re
as

on
 fo

r 
in

he
ri

ta
nc

e,
 b

y 
ex

pl
ai

ni
ng

 
th

e 
va

lu
e 

of
 c

od
in

g 
on

ce
 a

nd
 

pr
ov

id
in

g 
a 

m
ea

ns
 f

or
 d

ev
ir

ed
 o

bj
ec

ts
 

to
 u

se
 th

is
 c

od
e.

 

"C
om

po
si

tio
n 

V
er

su
s 

C
on

st
ru

ct
io

n"
 

de
m

on
st

ra
te

s 
w

ith
 c

od
in

g 
ho

w
 

in
he

ri
ta

nc
e 

is
 u

se
d 

an
d 

its
 v

al
ue

 to
 

O
O

P.
 

e o 
CO 
co 
U 

o 

■*-> 

1 

0 

CO 

O 
CO 

u 
u 

CQ 

Ü 

•t-> 
•c 

•a 
O 
CO 

CQ 
<D 

JS 
H 

0 

■s 

0 
§ 

•c 
i 

C o 
CO 

•a 

w 

CO g 

w 

CO 

C 
'3 

CO 

CO 

is 
CO 

C 
O 
S 
<u 
Q 

o 
c 
<u 

o 
B 

PL, 

CO 

<D 
U 
Ü 
O 

CO 

CO 

a> 
u 
0 
0 

CO 

CO 

ti u u 
3 

CO 

co 
•O 
4) 
<U 
O 
O 
3 

CQ 

CO 

u 
0 

3- 
CO 

c o 
co 
co u 

O 

*C 

•ä 
(4-1 
O 
CO 

C 

CQ 

1 
CO 

3 

Pi 

i 
0 

CO 

bO c 
3 

cza 

•0 
0 
U 

-^ 
O 

CQ 

< 
1—H 

1—1 

C
om

po
si

tio
n 

V
er

su
s 

C
on

st
ru

ct
io

n 

CO 

2 
CO 

d 

es 

0 e 
CO 
50 

1-3 
cu 
"a 
S 
es 

CQ 

es 
H 

29 



rr a Lesson Browser 

Inheritence Introduction 
The Benefits of Inheritence 
Software Reusability 
Code Sharing 
Consistency of Inheritence 
Software Components 
Rapid Prototyping 
Polymorphism 

New   )    Delete \ toad   )     Save ) print  )        Quit   ) 

Name: Inheritence Introduction Type: Essential 

Description: Introduction to OOP Inheritence 

Lesson plan: Inheritence 

Details 

Content: L6-0.EXE 

Jhis is trie introduction to OOP inheritence 

•\ 

Figure 4-1: Example Lesson Browser Screen 

The designer now executes the Lesson Plan Browser and selects "Add new 

plan..." from a pop-up menu and enters the information about the new Lesson Plan: 

1. Name for this Lesson Plan: "Inheritance." 

2. Short description of the plan: "OOP Inheritance." 

3. Detailed description of the plan. 

The designer assigns the desired lessons to this plan by selecting "Add new lesson..." 

from a pop-up menu and selects a lesson from a list of available lessons. This continues 

until all of the lessons for the plan are assigned. 

The designer assigns relationships between the lessons in the plan by pressing the 

"Add" push button in the lesson relation data window. The DST asks for the two lessons 

30 



between which relationships are to be defined. Both lessons are selected from a list of 

available lessons. The DST then asks for the precedence of the first lesson with respect 

xJ 
Lesson Plans- 

Lesson Plan Browser version [06.30] 

r Selected Lesson Plan Data- 

Lesson Plan:   Inheritance 

Description:   Explain and demonstrate OOP 

OOP Inheritance chapter 6 Budd's book OOP 

rLessons ki Selected Plan- 
Inheritance Introduction 
The Benefits of Inherence 
Software Reusability 
Code Sharing 
Consistency of Inheritance 
Sottware Components 
Rapid Prototyping 
Polymorphism 
Information Hiding 
The Cost of Inheritance 

Selected Lesson Data  

Name: Inheritance Introduction 

Description: Introduction to OOP Inheritence 

Type: Essential     content: L6-0.EXE 

This Is the Introduction to OOP Inheritence 

3 
rLesson Relations ki Selected Plan- r Lesson Relations For Selected Lesson- 

Inheritence Introduction : The Benefits of Inheritenct 
Inheritence Introduction: The Cost of Inheritence 
Inheritance Introduction: Heuristics for When to Sui 
Inheritance Introduction: If It Ainl Broke 
Inheritance Introduction : Tree Verus Forest 
Inheritence Introduction : Composition Verus Constr 
The Benefits of Inheritence : Software Reusability 
The Benefits of Inheritence: Code Sharing 
The Benefits of Inheritence : Consistency of Inherite 
The Benefits or Inheritence : Software Components 
The Benefits of Inheritence: Rapid Prototyping 

Inheritence Introduction : The Benefits of Inheritenci 
Inheritence Introduction: The Cost of Inheritence 
Inheritence Introduction : Heuristics for When to Sul 3 
Lesson Relation Data  

Inheritence 

Explains 

Add     ) 

The Benefits of 

Edit    1 Remove ) 

Figure 4-1: Example Lesson Plan 

to the second lesson (only choices are "Precedes" or "Succeeds") and for the relation of 

the first lesson to the second lesson, selected from a list of relations. This procedure is 

repeated for all of the relationships between the lessons of the plan. At the end of the 

session the DST screen would look something like Figure 4-2. 

After the relations are assigned, the designer selects "Compile relations..." from a 

pop-up menu; the DST searches through the lessons of the plan to build the Lesson Plan 

Tree Structure. If any inconsistencies are noted, the DST flags the designer and requires 

31 



Inheritance Introduction -HTneBeneW^gHnhentancc h 

—fine Co5t ot inheritance ^ 

-IHwjrbfac» br When to gubdml 

HI) ii Am Broke 
—Pree Venjs hörest" 
—ftofnpoi'bor' very* (.on?tnjct»y| 

Figure 4-3: Example Lesson Plan Tree Structure Graph 

the error to be corrected before it will continue with the compilation. This ensures that 

one error does not propagate additional errors throughout the tree structure. 

Once the Lesson Plan Tree is compiled, the designer can request a graphical view 

of the tree (Figure 4-3). This aids in determining if the structure of the plan is correct and 

what to present to a student. 

After the lesson plan is completed and successfully compiled, it can be assigned 

to students, using the Student Browser. The individual assigning lesson plans executes 

the Student Browser, and if the student is not already in the data base enters basic 

information about the student (name and social security number). The individual can 

then add or delete individual lesson plans for each student in the data base. 

D. USING THE ITS 

The above process would continue until the entire course is designed and the ITS 

is ready to be packaged. The complete ITS would include the individual Instructional 

32 



Units generated by an authoring tool, the knowledge-base rules/expert system, and the 

ITS moderator. The package would then be available on a designated system, and 

students would be assigned specific Lesson Plans. In this example, since each chapter is 

designed as a separate Lesson Plan, the instructor could assign Lesson Plans to students 

one at a time to ensure that each student completes the lessons in the correct sequence and 

does not attempt a more advanced lesson without having the basic information necessary. 

Since the ITS is designed to be used by sites without instructors, a specific individual is 

assigned to administer the training and maintain the system as required. 

Once all of the components of the ITS (IUs, Knowledge Base, DST-generated 

lesson plans) are developed, a student can use the system to execute a course of 

instruction. The student accesses the ITS via the system moderator by logging onto the 

system (using their name and social security number). Once logged in, the student may 

select any of the assigned lesson plans to execute. Once a lesson plan is selected, the 

moderator presents the student with a list of the lessons in the plan and any lessons which 

the student has completed. The student selects a lesson to execute, and the moderator 

checks with the Student Information Module to see if the student has used this lesson plan 

and if the student is authorized to execute the requested lesson. If the request is 

authorized, the moderator loads the executable file and executes. During the execution of 

the IU, the moderator monitors the IU's execution for messages and interfaces with the 

knowledge base system to determine whether other information should be presented to 

the student. These procedures continue until the student has completed the IU or lesson 

33 



plan, or requests to end the tutoring session. The moderator records information about 

the student's system usage in the Student Information Module and continues with the 

course or terminates program execution. 

34 



V. CONCLUSIONS 

A. SUMMARY 

The future of education in DoD with decreasing personnel and funds will rely 

more and more on computer-aided instruction systems. The designers of these systems 

will require more advanced features (multimedia) and tools (CD ROM, etc.), and the 

ability to quickly design and maintain a tutoring system as requirements and the 

educational process evolve. Future tutoring systems will require intelligence to provide 

the support that human instructors currently are able to provide to the students. However, 

designing a specific Intelligent Tutoring System for a specific topic does not utilize the 

computer to its best advantage. The future of ITS must provide the ability to easily 

change or modify course contents and should use different components in parallel to 

provide the student with an educational tool which utilizes the power of modern computer 

systems. This will require the ITS to integrate lessons (IUs) generated with an advanced 

authoring system with a knowledge base expert system. 

B. FUTURE RESEARCH 

This thesis presented a bare-bones approach to the design of an Intelligent 

Tutoring System Design Support Tool. The proposed tool must be expanded and future 

research must determine the best system and test its interface with current authoring tools 

and expert systems. 

35 



1.   Design of a support tool 

The support tool should incorporate the design features stated in this thesis 

and provide an easy interface for the integration of the different components of an ITS. 

The proposed DST's capabilities need to be expanded to include the ability to link lessons 

together using a graphical interface. The best method would be to expand the 

functionality of the lesson plan tree structure graph. This expansion should include 

features which allow the designer to use point-and-click plus drag-and-drop techniques 

for linking and unlinking of lessons during the design process. 

2. Design of knowledge base rules 

Determining the rules for using the ITS is another major research project. 

The knowledge-based expert system tool should be simple enough for a nonprofessional 

designer to use and understand. The design tool must allow the designer to define 

specific rules based on the course objectives and the lesson outline. These rules will be 

used by the system moderator during the execution of the tutoring system. 

3. Implementation of a complete ITS 

The complete system should seamlessly integrate the three parts of the ITS: 

lessons (IUs), knowledge base, and student information module. This integration is 

accomplished with the system moderator. The moderator must be designed, coded and 

tested using the proposed features of the DST. 

36 



C. FINAL THOUGHTS 

"As computer technology advances rapidly, computer systems become common 

tools for education. Although human expertise is better in teaching overall, computer 

tutors have the advantage of being available day and night. They never get tired and 

students find them less intimidating than [instructors]." [Ref. 8] 

If downsizing continues and the use of advanced technology continues DoD must 

expand its use of computers in training and provide for a lack of human instructors with 

the use of ITS systems. 

37 



38 



LIST OF REFERENCES 

1. Bonar, J., Cunningham, R. and Schultz, J., "An Objected-Oriented Architecture for 
Intelligent Tutoring Systems, OOPSLA '86 Proceedings, pp. 269-76, SEPT. 1986. 

2. Budd, T., An Introduction To Objected-Oriented Programming. Addison-Wesley, 
1991. 

3. Burns, H.L. and Capps, CG., "Foundations of Intelligent Tutoring Systems", In 
M.C. Polsom & J.J. Richardson (Eds.), Foundations of Intelligent Tutoring 
Systems, pp. 1-19, LEA Publishers, New Jersey. 

4. Goodman, B.A., "Multimedia Explanations for Intelligent Traingin Systems", 
Conference on Intelligent Computer-Aided Training, 1991. 

5. Livergood, N.D., "Specification and Design Procedures, Functions, and Issues in 
Developing Intelligent Tutoring Systems", J. ED. TECH.SYS., vol. 19(3), pp. 
251-64,1990-1991. 

6. Russell, D.M., Moran, T.P. and Jordan, D.S., "The Instructional-Design 
Environment", In J. Psotka, L.D. Massey and S.A. Mutter (Eds), Intelligent 
Tutoring Systems: Lessons Learned, pp. 203-28, LEA Publishers, New Jersey. 

7. Russell, D.M., "IDE: The Interpreter", In J. Psotka, L.D. Massey and S.A. Mutter 
(Eds), Intelligent Tutoring Systems: Lessons Learned, pp. 323-49, LEA Publishers, 
New Jersey. 

8. Shim, Leemseop, "Student Modeling for an Intelligent Tutoring System: Based on 
the Analysis of Human Tutoring Sessions", Dissertation, April 1991, Illinois 
Institute of Technology. 

9. Steier, D.M., et. al., "Combining Multiple Knowledge Sources in an Integrated 
Intelligent System", IEEE Expert, pp. 35-43, JUNE 1993. 

10. Syang, A.A., "A Quantitative Student Model for Intelligent Tutoring Systems: 
Student Programming Ability", Dissertation, May 1992, University of Texas, 
Austin. 

39 



11. VaLehn, K., "Student Modeling", In M.C. Polsom & J.J. Richardson (Eds), 
Foundations of Intelligent Tutoring Systems, pp. 55-78, LEA Publishers, New 
Jersey. 

12. Wong, S.T.C., "COSMO: A Communication Scheme for Cooperative 
Knowledge-based Systems", IEEE Trans Systems, vol. 23. pp. 809-24, 
MAY/JUNE 1993. 

40 



BIBLIOGRAPHY 

Bonar, J., Cunningham, R. and Schultz, J., "An Object-Oriented Architecture for 
Intelligent Tutoring Systems, OOPSLA '86 Proceedings, pp. 269-76, SEPT. 1986. 

Budd, T., An Introduction To Object-Oriented Programming. Addison-Wesley, 1991. 

Burns, H.L. and Capps. CG., "Foundations of Intelligent Tutoring Systems", In M.C. 
Polsom & J.J. Richardson (Eds.), Foundations of Intelligent Tutoring Systems, pp. 1-19, 
LEA Publishers, New Jersey. 

Chen, J.W. and Chen M., "Toward the design of an Intelligent courseware production 
system using software engineering and industrial design principles", J. ED. TECH. SYS., 
vol 19(1), pp. 41-52,1990-91. 

Goldberg, A., SmallTalk-80 The Interactive Programming Environment. 
Addison-Wesley, 1984. 

Goldberg, A. and Robson, D., SmallTalk-80 The Language and its Implementation. 
Addison-Wesley, 1983. 

Goodman, B.A., "Multimedia Explanations for Intelligent Training Systems", Conference 
on Intelligent Computer-Aided Training, 1991. 

Livergood, N.D., "Specification and design procedures, functions, and issues in 
developing intelligent tutoring systems", J. ED. TECH. SYS., vol 19(3), pp. 251-64, 
1990-1991. 

MacGreagor, R. and Burstein, M.H., "Using a description classification to enhance 
knowledge representation.", IEEE Expert, pp. 41-6, JUNE 1991. 

Reid, J.C. and Mitchell, J. A., "The improvement of learning in computer assisted 
instruction.", J. ED. TECH. SYS, vol 19(4), pp. 281-9,1990-1991. 

Russell, D.M., Moran, T.P. and Jordan, D.S., "The Instructional-Design Environment", In 
J. Psotka, L.D. Massey and S.A. Mutter (Eds.), pp. 203-28, Intelligent Tutoring Systems: 
Lessons Learned, LEA Publishers, New Jersey. 

Russell, D.M., "IDE: The Interpreter", In J. Psotka, L.D. Massey and S.A. Mutter (Eds.), 
pp. 203-28, Intelligent Tutoring Systems: Lessons Learned, LEA Publishers, New Jersey. 

41 



Shim, Leemseop, "Student Modeling for an Intelligent Tutoring Stystem: Based on the 
Analysis of Human Tutoring Sessions", Dissertation, April 1991, Illinois Institute of 
Technology. 

Steier, D.M. et. al., "Combining multiple knowledge sources in an integrated intelligent 
system.", IEEE Expert, pp. 35-43, JUNE 1993. 

Swartout, W. and Moore, J., "Design for explainable expert systems.", IEEE Expert, pp. 
58-64, JUNE 1991. 

Syang, Anchir A., "A Quantitive Student Model for Intelligent Tutoring Systems: Student 
Programming Ability.", Dissertation, May 1992, Univerisity of Texas, Austin. 

VaLehn, K., "Student Modeling", In M.C. Polsom & J.J. Richardson (Eds.), Foundations 
of Intelligent Tutoring Systems, pp. 55-78, LEA Publishers, New Jersey. 

Wong, S. T. C, "COSMO: A Communication Scheme for Cooperative Knowledge-based 
Systems", IEEE Trans Systems, vol. 23, pp. 809-24, MAY/JUNE 1993. 

42 



INITIAL DISTRIBUTION LIST 

Number of Copies 
1. Defense Technical Information Center 2 

Cameron Station 
Alexandria, Virginia 22304-6145 

2. Library, Code 052 2 
Naval Postgraduate School 
Monterey, California 93943-5002 

3. Systems Management, Code 36 1 
Naval Postgraduate School 
Monterey, California 93943-5002 

4. Kishore Sengupta, Code SM/SE 5 
Department of Systems Management 
Naval Postgraduate School 
Monterey, California 93943-5002 

5. B. Ramesh, Code SM/RA 1 
Department of Systems Management 
Naval Postgraduate School 
Monterey, California 93943-5002 

6. LCDR Harry E. Landau 2 
Submarine Training Facility 
544 White Road 
San Diego, California 92106-3550 

43 


